Calculate degree of missingness for each featurea and sample
calc_missingness.Rdcalc_missingness() calculates the fraction of samples that are missing data for each feature, and fraction of each feature that are missing for each sample.
Value
SpatialExperiment object with missingFeature column added to colData and missingSample added to rowData
Examples
library(spammR)
data(smallPancData)
data(pancMeta)
data(protMeta)
pooledPanc <- dplyr::bind_cols(smallPancData)
panc.spe <- convert_to_spe(pooledPanc, pancMeta, protMeta,
feature_meta_colname = "pancProts")
#> Spatial object created without spatial coordinate
#> column names provided. Distance based analysis will not be enabled.
#> Note: Only mapping metadata for 2986 features out of 3000 data points
calc_missingness(panc.spe)
#> class: SpatialExperiment
#> dim: 2986 27
#> metadata(0):
#> assays(1): proteomics
#> rownames(2986): sp|A0A024RBG1|NUD4B_HUMAN sp|A0A096LP55|QCR6L_HUMAN ...
#> sp|Q7Z2T5|TRM1L_HUMAN sp|Q7Z2W4|ZCCHV_HUMAN
#> rowData names(7): pancProts Entry ... PrimaryGeneName missingSample
#> colnames(27): 0_S_1_1 0_S_1_2 ... 7_S_3_2 7_S_3_3
#> colData names(17): Image x_coord ... sample_id missingFeature
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):
#> spatialCoords names(0) :
#> imgData names(1): sample_id